首 页  |  期刊简介  |  投稿须知  |  专家审稿  |  编者登陆  |  公告信息  |  联系我们  |  English
引用本文格式: XU Tian-Han,Zhao Dian-Dian,Song Hai-Yang. Simulations on the effect of hydrogen atoms on the mechanical properties of α -iron at asymmetric Σ5 grain boundary [J]. J. At. Mol. Phys., 2019, 36: 843 (in Chinese) [许天旱,赵典典,宋海洋. 氢原子对非对称Σ5晶界α-铁力学性能影响的模拟研究 [J]. 原子与分子物理学报, 2019, 36: 843]
 
氢原子对非对称Σ5晶界α-铁力学性能影响的模拟研究
Simulations on the effect of hydrogen atoms on the mechanical properties of α -iron at asymmetric Σ5 grain boundary
摘要点击 201  全文点击 62  投稿时间:2018-09-26  修订日期:2018-10-26
查看全文  查看/发表评论  下载PDF阅读器
DOI编号   
中文关键词   氢脆  相变  非对称晶界  分子动力学
英文关键词   Hydrogen embrittlement  Phase transition  Asymmetric grain boundary  Molecular dynamics
基金项目   国家自然科学基金(11572259)
作者单位E-mail
许天旱 西安石油大学 263284740@qq.com 
赵典典 西安石油大学材料学院 513861106@qq.com 
宋海洋 西安石油大学材料学院 gsfshy@163.com 
中文摘要
    采用分子动力学模拟方法研究了在单轴拉伸载荷下,界面旋转角度和氢原子浓度对含有非对称倾斜Σ5晶界的双晶α-铁力学性能的影响。研究结果表明,双晶体的塑性变形主要是通过原始BCC相转变为亚稳态FCC相,再进而转变成新BCC相的过程来实现的,且该变形机制不依赖于氢原子的浓度。氢原子的引入使得双晶α-铁在塑性变形过程中,BCC-FCC的相变更容易发生,但在塑性变形后期氢原子阻碍了FCC相向BCC相的转变。此外,双晶α-铁的峰值应力随着氢浓度的增加而减小。
英文摘要
    Molecular dynamics simulation method was used to study the effect of interface rotation angle and hydrogen atom concentration on the mechanical properties of bi-crystal α-iron with asymmetric tilt Σ5 grain boundary under uniaxial tensile loading. The results show that the plastic deformation of the bi-crystal is mainly achieved by the transformation of the original BCC phase into the metastable FCC phase and then into the new BCC phase, and the deformation mechanism does not depend on the concentration of hydrogen atoms. The introduction of hydrogen atoms makes the phase transition of BCC-FCC easy to occur during the plastic deformation of bi-crystal α-iron, but the hydrogen atom hinders the transition of FCC phase to BCC phase in the later stage of plastic deformation. In addition, the peak stress of the bi-crystal α-iron decreases as the hydrogen concentration increases.

您是第 3191512 位访客
版权所有 @ 2006《原子与分子物理学报》编辑部
通讯地址:四川省成都市四川大学原子与分子物理研究所   邮编:成都 610065
电话:QQ: 3094757965  传真:  E-mail:jamp@scu.edu.cn
本系统由北京勤云科技发展有限公司设计