首 页  |  期刊简介  |  投稿须知  |  专家审稿  |  编者登陆  |  公告信息  |  联系我们  |  English
引用本文格式: Li Ya-Sha,liu zhipeng,wang chengjiang,liu guocheng,tu minglin. Comparative Research of Corrosion Behavior Between DBDS and DBS on Copper Windings Based on Density Functional Theory [J]. J. At. Mol. Phys., 2019, 36: 574 (in Chinese) [李亚莎,刘志鹏,王成江,刘国成,涂鸣麟. 基于密度泛函理论的DBDS与DBS对铜绕组腐蚀性能对比研究 [J]. 原子与分子物理学报, 2019, 36: 574]
 
基于密度泛函理论的DBDS与DBS对铜绕组腐蚀性能对比研究
Comparative Research of Corrosion Behavior Between DBDS and DBS on Copper Windings Based on Density Functional Theory
摘要点击 148  全文点击 32  投稿时间:2018-05-22  修订日期:2018-06-20
查看全文  查看/发表评论  下载PDF阅读器
DOI编号   
中文关键词   密度泛函  二苄基二硫醚  二苄基硫醚  变压器
英文关键词   Density functional theory  dibenzyl disulfide  dibenzyl sulfide  transformer
基金项目   国家自然科学基金
作者单位E-mail
李亚莎 三峡大学电气与新能源学院 liyasha@ctgu.edu.cn 
刘志鹏 三峡大学电气与新能源学院  
王成江 三峡大学电气与新能源学院  
刘国成 三峡大学电气与新能源学院  
涂鸣麟 三峡大学电气与新能源学院  
中文摘要
    二苄基二硫醚(DBDS)与二苄基硫醚(DBS)是变压器内部主要腐蚀性硫化物,能腐蚀铜绕组,破坏变压器的安全运行。为从微观层面探究两者腐蚀性能的差异,基于密度泛函理论(DFT)对DBDS与DBS的腐蚀性能进行对比研究。计算了DBDS/Cu(110)吸附模型与DBS/Cu(110)吸附模型的功函变化,发现DBDS/Cu(110)的功函变化1(0.388eV)绝对值要小于DBS/Cu(110)功函变化2(1.118eV)绝对值,说明DBS更易吸附Cu(110)表面;DBDS在Cu(110)表面的吸附能Eads1为8.571eV,DBS在Cu(110)表面吸附能Eads2为6.077eV,表明两者都不能自发吸附,需要从外界吸热才能吸附,且DBS从外界获取能量更少,更容易吸附。同时比较了DBDS分子与DBS分子前线轨道分布以及HOMO轨道与LUMO轨道能量差,计算了DBDS分子与DBS分子的电负性,结果表明:DBDS电负性大小为3.132eV,DBS电负性大小为3.100eV,两者基本相等。而DBDS前线轨道能量差(2.610eV)明显小于DBS前线轨道能量差(3.610eV), DBDS优化前后的S-S键长分别为2.033Å和3.057Å,说明DBDS更容易与Cu发生反应。以上模拟结果说明,DBS更易吸附于Cu,而DBDS更易与Cu发生反应。
英文摘要
    Dibenzyl disulfide(DBDS) and Dibenzyl sulfide(DBS) are the main corrosive sulfides inside the transformer, which can corrode the copper winding and destroy the safety of the transformer. In order to explore the difference of corrosion resistance performance, the density functional theory was used to compare the corrosion resistance of DBDS and DBS from micro view. The work function changes of the DBDS/Cu (110) adsorption model and the DBS/Cu (110) adsorption model are calculated. It is found that the absolute value of the work function change (-0.388eV) of the DBDS/Cu (110) is less than the absolute value of the DBS/Cu (110) work function change (-1.118eV), Indicating that DBS is more easily adsorbed on the Cu (110) surface. The adsorption energy of DBDS on the surface of Cu (110) is 8.571eV, and the adsorption energy of DBS on the surface of Cu (110) is 6.077eV. It shows that both of them cannot be adsorbed spontaneously. It is necessary to absorb heat from the outside world, and DBS can be absorbed less from the outside and easier to adsorb. At the same time, the molecular front-line orbital distribution of two corrosive sulfides and the energy difference between the HOMO orbit and the LUMO orbit were compared, and the electronegativity was calculated. The results show that the size of DBDS electronegativity is 3.132ev and the DBS’ is 3.100ev, Both are basically equal. However, the energy difference of DBDS frontier orbit(2.610eV) is much smaller than DBS frontier orbital energy difference(3.610eV), and the S-S bond length of DBDS before and after optimization is 2.033Å and 3.057Å respectively, which indicates that DBDS is more likely to react with Cu. The above simulation results indicate that DBS is more easily adsorbed on Cu, while DBDS is more likely to react with Cu.

您是第 3119134 位访客
版权所有 @ 2006《原子与分子物理学报》编辑部
通讯地址:四川省成都市四川大学原子与分子物理研究所   邮编:成都 610065
电话:QQ: 3094757965  传真:  E-mail:jamp@scu.edu.cn
本系统由北京勤云科技发展有限公司设计