引用本文格式: Li Jia-Hao,Huang Xin,Yang Zhi-Hong. First-principles study on the photocatalytic water splitting of SiS2/ZnO van der Waals heterostructure [J]. J. At. Mol. Phys., 2025, 42: 061005 (in Chinese) [李家豪,黄欣,杨志红. SiS2/ZnO范德华异质结光催化水分解第一性原理研究 [J]. 原子与分子物理学报, 2025, 42(6): 061005] |
|
SiS2/ZnO范德华异质结光催化水分解第一性原理研究 |
First-principles study on the photocatalytic water splitting of SiS2/ZnO van der Waals heterostructure |
摘要点击 405 全文点击 19 投稿时间:2024-04-09 修订日期:2024-04-16 |
查看全文 查看/发表评论 |
DOI编号
10.19855/j.1000-0364.2025.061005 |
中文关键词
SiS2/ZnO Z-型范德华异质结 光催化 电子结构 第一性原理 |
英文关键词
SiS2/ZnO Z-scheme van der Waals heterostructure Photocatalysis Electronic structure First-principles |
基金项目
|
|
中文摘要
|
基于第一性原理方法,研究了SiS2/ZnO范德华异质结的电子结构和光催化性质. 结果表明,SiS2/ZnO异质结是带隙值为1.32 eV的半导体材料,表现出交错排列的能带结构. 在异质结界面处,形成了从ZnO指向SiS2的内置电场,该内置电场的存在使得SiS2/ZnO异质结中形成了特殊的“Z-型”载流子迁移模式,有利于电子空穴对的有效分离,同时增强了载流子的氧化还原能力. 异质结构具有良好的热力学稳定性,且带边位置跨越水的氧化还原电位. 与单层材料相比,SiS2/ZnO异质结光吸收谱出现红移现象,表现出更宽的光吸收范围(从可见光到紫外光)及更强的光吸收强度(达到105 cm-1量级). 另外,通过施加双轴应变,可以有效调控SiS2/ZnO异质结的带隙值. 以上结果表明SiS2/ZnO异质结有潜力成为新型光催化剂用于全解水. |
英文摘要
|
Based on the first-principles method, the electronic structure and photocatalytic properties of the SiS2/ZnO van der Waals heterostructure have been studied. The results indicate that the SiS2/ZnO heterostructure is a semiconductor material with a bandgap value of 1.32 eV, exhibiting a staggered band structure. At the interface of the heterostructure, an internal electric field pointing from ZnO to SiS2 is formed. The presence of this internal electric field results in a special "Z-scheme" carrier migration mode in the SiS2/ZnO heterostructure, which is beneficial for the effective separation of electron-hole pairs and enhancing redox capabilities of the carriers. The SiS2/ZnO heterostructure exhibits good thermodynamic stability, and its band edge positions span the redox potential of water. Compared to the monolayer materials, the optical absorption spectrum of the SiS2/ZnO heterostructure exhibits a red shift, demonstrating a broader range of light absorption (from visible light to ultraviolet light) and stronger light absorption intensity (reaching the order of 105 cm-1). Additionally, the bandgap value of the SiS2/ZnO heterostructure can be effectively modulated by applying biaxial strain. The above results indicate that the SiS2/ZnO heterostructure has the potential to become a novel photocatalyst for overall water splitting. |