首 页  |  期刊简介  |  投稿须知  |  专家审稿  |  编者登陆  |  公告信息  |  联系我们  |  English
引用本文格式: Zou Meng-Zhen,Xiao Qing-Quan,Yao Yun-Mei,Fu Sha-Sha,Ye Jian-Feng,Tang Hua-Zhu,Xie Quan. First-principles study on the photoelectric properties of Lu-Eu co-doped β-Ga2O3 [J]. J. At. Mol. Phys., 2024, 41(3): 036003 (in Chinese) [邹梦真,肖清泉,姚云美,付莎莎,叶建峰,唐华著,谢泉. Lu-Eu共掺杂Ga2O3的光电性质的第一性原理计算 [J]. 原子与分子物理学报, 2024, 41(3): 036003]
 
Lu-Eu共掺杂Ga2O3的光电性质的第一性原理计算
First-principles study on the photoelectric properties of Lu-Eu co-doped β-Ga2O3
摘要点击 135  全文点击 49  投稿时间:2022-07-30  修订日期:2022-08-11
查看全文  查看/发表评论  下载PDF阅读器
DOI编号   
中文关键词   第一性原理  Lu-Eu共掺β-Ga2O3  电子结构  光学性质
英文关键词   First-principles  Lu-Eu co-doped β-Ga2O3 Electronic structures  Optical properties
基金项目   
作者单位E-mail
邹梦真 贵州大学 1578594316@qq.com 
肖清泉* 贵州大学 qqxiao@gzu.edu.cn 
姚云美 贵州大学  
付莎莎 贵州大学  
叶建峰 贵州大学  
唐华著 贵州大学  
谢泉 贵州大学  
中文摘要
    宽禁带半导体β-Ga2O3因为具有优良的物理化学性能而成为研究热点. 本文基于DFT(Density Functional Theory)的第一性原理方法,先采用PBE(Perdew-Burke-Ernzerhof)中的GGA(Generalized Gradient Approximation)和GGA+U(Generalized Gradient Approximation-Hubbard U)的方法计算了本征β-Ga2O3,Lu掺杂浓度为12.5%的β-Ga2O3及Lu-Eu共掺杂浓度为25%的β-Ga2O3结构的晶格常数、能带结构和体系总能量. 发现采用GGA+U的方法计算的带隙值更接近实验值,于是采用GGA+U的方法计算了本征β-Ga2O3,Lu掺杂的β-Ga2O3以及Lu-Eu共掺杂的β-Ga2O3结构的能态总密度、介电函数、吸收谱以及反射率等. 由计算结果得知β-Ga2O3的带隙为4.24 eV,Lu掺杂浓度为12.5%的β-Ga2O3的带隙为2.23 eV,Lu-Eu共掺杂浓度为25%的β-Ga2O3的带隙为0.9 eV,均为直接带隙半导体,掺杂并未改变β-Ga2O3的带隙方式. 光学性质计算结果表明在低能区掺杂浓度为12.5%的Lu和Lu-Eu共掺杂浓度为25%的β-Ga2O3的吸收系数和反射率均强于本征β-Ga2O3,Lu-Eu掺杂β-Ga2O3的吸收系数和反射率又略强于Lu掺杂β-Ga2O3,表明Lu-Eu掺杂β-Ga2O3的材料有望应用于制备红外光电子器件.
英文摘要
    Wide band gap semiconductor β-Ga2O3 has become a research hotspot because of its excellent physical and chemical properties. Based on the first-principle method of density functional theory, the band structures, lattice constants and total energies of intrinsic β-Ga2O3, Lu-doped β-Ga2O3 at a doping concentration of 12.5 at% and Lu-Eu co-doped β-Ga2O3 at a doping concentration of 25 at% structures were calculated by GGA (Generalized Gradient Approximation) and GGA+U (Generalized Gradient Approximation-Hubbard U) methods in PBE (Perdew-Burke-Ernzerhof). It is found that the band gap calculated by the GGA+U method is closer to the experimental value, so the GGA+U method was used to calculate the basic physical properties,such as the density of states, dielectric function, absorption spectrum and reflectance, for the intrinsic β-Ga2O3, Lu-doped β-Ga2O3 and Lu-Eu co-doped β-Ga2O3 systems .The results show that the band gap of β-Ga2O3 is 4.24 eV, the band gap of Lu-doped β-Ga2O3 at a doping concentration of 12.5 at% is 2.23 eV, and the band gap of Lu-Eu co-doped β-Ga2O3 at a doping concentration of 25 at% is 0.9 eV. All of these are direct band gap semiconductors. The doping does not change the band gap mode of β-Ga2O3. The calculation results of optical properties show that the absorption coefficient and reflectance of Lu-doped β-Ga2O3 at a doping concentration of 12.5 at% and Lu-Eu co doped β-Ga2O3 at a doping concentration of 25 at% are stronger than those of intrinsic β-Ga2O3 in the low energy region. The absorption coefficient and reflectance of Lu-Eu-doped β-Ga2O3 are slightly stronger than Lu-doped β-Ga2O3, indicating that Lu-Eu co-doped β-Ga2O3 materials are likely to be used in the manufacture of infrared photoelectronic devices.

您是第 4712626 位访客
版权所有 @ 2006《原子与分子物理学报》编辑部
通讯地址:四川省成都市四川大学原子与分子物理研究所   邮编:成都 610065
电话:QQ: 3094757965  传真:  E-mail:jamp@scu.edu.cn
本系统由北京勤云科技发展有限公司设计