首 页  |  期刊简介  |  投稿须知  |  专家审稿  |  编者登陆  |  公告信息  |  联系我们  |  English
引用本文格式: Li Hao-Nan,Li Cong. Study of the effect of Y doping on the electronic structure and absorption spectrum of ZnTe based on selective doping orientation [J]. J. At. Mol. Phys., 2024, 41(6): 066003 (in Chinese) [李昊男,李聪. 基于择优掺杂取向研究Y掺杂量对ZnTe电子结构和吸收光谱的影响 [J]. 原子与分子物理学报, 2024, 41(6): 066003]
 
基于择优掺杂取向研究Y掺杂量对ZnTe电子结构和吸收光谱的影响
Study of the effect of Y doping on the electronic structure and absorption spectrum of ZnTe based on selective doping orientation
摘要点击 234  全文点击 27  投稿时间:2023-02-16  修订日期:2023-03-15
查看全文  查看/发表评论  下载PDF阅读器
DOI编号   
中文关键词   Y掺杂ZnTe  掺杂浓度与方式  第一性原理  电子结构  光电性质
英文关键词   Y-doped ZnTe  doping concentration and mode  first nature principle  electronic structure  optoelectronic properties
基金项目   省市自然科学基金
作者单位E-mail
李昊男 牡丹江师范学院 1196909841@qq.com 
李聪* 牡丹江师范学院 lc231001@163.com 
中文摘要
    摘要:ZnTe由于其特有的禁带宽度,光学性质以及可重掺杂等特性,使得众多学者对其进行了系列的相关研究,但关于Y掺杂浓度和掺杂方式对ZnTe的影响却鲜有报道。作者采用密度泛函理论框架下的广义梯度近似方法,分别计算了Y在掺杂浓度为1.56at%、3.13at%、4.69at%下ZnTe的几何结构、能带结构、态密度分布、吸收光谱等性质,以及不同掺杂方式对体系的影响。结果表明:在掺杂浓度为3.12at%,掺杂方式不相同时,掺杂原子沿[111]晶向排布的形成能最低,即[111]晶向为择优晶向。当掺杂浓度为4.69at%时,择优晶面为(111)面。若要实现更高浓度的Y掺杂,沿(111)晶面掺杂更容易实现。对于实验而言,更高浓度的Y掺杂,掺杂原子在ZnTe体系中更容易沿(111)晶面进行集中排列。Y掺杂ZnTe后,体系的禁带宽度变大,吸收光谱发生蓝移,对可见光的吸收强度减小。在浓度为3.13at%时禁带宽度最大,蓝移现象最明显,吸收强度最小。Y掺杂后体系变为n型半导体,可以使用这种掺杂方式制作P-N结二极管。
英文摘要
    ZnTe has been subjected to a series of related studies by many scholars due to its unique forbidden band width, optical properties and re-doping, but little has been reported on the effects of Y doping concentration and doping method on ZnTe. The authors used the generalized gradient approximation method under the framework of density generalization theory to calculate the geometry, energy band structure, density of states distribution, absorption spectra and other properties of ZnTe at doping concentrations of 1.56at%, 3.13at% and 4.69at%, and the effects of different doping methods on the system, respectively. The results show that at a doping concentration of 3.12at% and different doping methods, the formation energy of the doped atoms along the [111] crystal orientation is the lowest, i.e., the [111] crystal orientation is the preferred crystal orientation. When the doping concentration is 4.69at%, the preferred crystallographic plane is the (111) plane. To achieve a higher concentration of Y doping, doping along the (111) crystal plane is more easily achieved. For experimental purposes, higher concentration of Y doping makes it easier to concentrate the dopant atoms in the ZnTe system along the (111) crystal plane. the Y doping of ZnTe results in a larger forbidden band width, a blue shift in the absorption spectrum and a reduction in the intensity of absorption of visible light. The concentration is 3.13at%, the band width is the largest, the blue shift is the most obvious, and the absorption intensity is the smallest.The system becomes an n-type semiconductor after Y doping, and P-N junction diodes can be made using this doping method.

您是第 4894320 位访客
版权所有 @ 2006《原子与分子物理学报》编辑部
通讯地址:四川省成都市四川大学原子与分子物理研究所   邮编:成都 610065
电话:QQ: 3094757965  传真:  E-mail:jamp@scu.edu.cn
本系统由北京勤云科技发展有限公司设计