引用本文格式: Zhu Pu-Jie,Yang Long-Long,Zhang Liang,Sun Kun. Molecular dynamics study on the effect of voids on the tensile properties of FeCrNiCoCu high-entropy alloy [J]. J. At. Mol. Phys., 2024, 41(6): 066007 (in Chinese) [朱璞洁,杨龙龙,张靓,孙琨. 孔洞对FeCrNiCoCu高熵合金拉伸性能影响的分子动力学研究 [J]. 原子与分子物理学报, 2024, 41(6): 066007] |
|
孔洞对FeCrNiCoCu高熵合金拉伸性能影响的分子动力学研究 |
Molecular dynamics study on the effect of voids on the tensile properties of FeCrNiCoCu high-entropy alloy |
摘要点击 119 全文点击 20 投稿时间:2023-02-20 修订日期:2023-03-07 |
查看全文 查看/发表评论 下载PDF阅读器 |
DOI编号
|
中文关键词
FeCrNiCoCu,分子动力学模拟,孔洞,力学性能,位错 |
英文关键词
FeCrNiCoCu, molecular dynamic simulation, void, mechanical properties, dislacation |
基金项目
国家自然科学基金(52075417) |
|
中文摘要
|
孔洞是FeCrNiCoCu高熵合金在制备过程中常见的缺陷,为此本文利用分子动力学模拟方法构建含孔洞的FeCrNiCoCu模型进行单轴拉伸模拟,探究了孔洞位置、孔洞半径和变形温度对其力学性能的影响。研究发现,在Z轴晶向为[111]的晶体中和晶界处的孔洞会显著降低模型的屈服应变和屈服强度,但对模型的杨氏模量影响不大。随着晶界处孔洞半径的增大,在弹性阶段,孔洞半径增大使应力集中面积增大,有利于位错形核,模型的力学性能随之降低。在塑性变形阶段,随着孔洞半径的增大,初始位错更倾向于向Z轴晶向为[001]的晶体中扩展。在中、低温条件下(T<800 K),模型保持良好的力学性能;在高温条件下,力学性能显著降低。在高温塑性变形阶段,模型中的总位错线长度较低,平均流变应力也较低。 |
英文摘要
|
Void is a common defect in the preparation of FeCrNiCoCu high-entropy alloy. Thus, this paper employs molecular dynamic simulation to build FeCrNiCoCu models with void for uniaxial tension simulation, and explores the effect of the voids location, void radii and deformation temperature on the mechanical properties. It is found that the void in the crystal with the Z-axis orientation of [111] and at the grain-boundary (GB) will seriously reduce the yield strain and yield stress, but have little effect on the Young’s modulus of the model. With the increase of the void radius at the grain boundary, in the elastic stage, the increase of the void radius increases the area of stress concentration, which is conducive to dislocation nucleation, and the mechanical properties of the model decrease accordingly. In the plastic deformation stage, with the increase of the void radius, the initial dislocations tend to expand to the crystal with the Z axis orientation of [001]. The model maintains good mechanical properties at medium and low temperatures; at high temperature, the mechanical properties decreased significantly. In the high temperature plastic deformation stage, the total length of dislocation in the model is low, and the average flow stress is also low. |
|
|
|
|
|