引用本文格式: Fu Jin-Yun,Wu Li-Jun,Wang Shuang,Chi Zhong-Yu,Liu Ya. Structure and spin-polarized electron properties of vacancy defect silicene nanoribbons by Density Functional Tight Binding (DFTB) simulations [J]. J. At. Mol. Phys., 2025, 42: 032001 (in Chinese) [扶锦云,吴丽君,王爽,迟中钰,刘亚. 空位缺陷硅烯纳米带结构与自旋极化电子性质的密度泛函紧束缚研究 [J]. 原子与分子物理学报, 2025, 42(3): 032001] |
|
空位缺陷硅烯纳米带结构与自旋极化电子性质的密度泛函紧束缚研究 |
Structure and spin-polarized electron properties of vacancy defect silicene nanoribbons by Density Functional Tight Binding (DFTB) simulations |
摘要点击 169 全文点击 101 投稿时间:2023-07-13 修订日期:2023-08-04 |
查看全文 查看/发表评论 |
DOI编号
10.19855/j.1000-0364.2025.032001 |
中文关键词
硅烯纳米带 自旋极化电子性质 密度泛函紧束缚 空位缺陷 |
英文关键词
Silicene nanoribbons Spin-polarized electronic properties Density functional compact binding Vacancy defect |
基金项目
沈阳理工大学创新创业计划项目(省级)(批准号:202210144055)、辽宁省教育厅基本科研项目(批准号:LJKMZ20220621)、教育部2022年第二批产学合作协同育人项目(批准号:220702116181140)和教育部第二期供需对接就业育人项目(批准号:20230103979)资助的课题. |
|
中文摘要
|
随着纳米电子器件和自旋电子学的不断发展,对小尺寸的纳米硅材料物理和化学性质的研究是研发新型微电子材料器件的基础。硅烯纳米带在实验制备和理论研究中均备受关注。本研究利用基于自洽电荷的密度泛函理论紧束缚方法,研究了不同宽度的硅烯纳米带的结构、稳定性和自旋极化电子性质。研究发现,稳定的完美和带有空位缺陷的硅烯纳米带表现为带有曲翘褶皱的蜂窝结构。纳米带边缘的曲翘度大于中心位置。空位缺陷更容易出现在纳米带边缘。纳米带的宽度可实现完美的硅烯纳米带的半导体性质和金属性之间的转换。硅烯纳米带中出现空位缺陷可有效调控纳米带自旋电子性质从半导体向金属性转变、半导体向半金属性转变,及金属性向为半导体或者半金属性质的转变。这种自旋电子性质的调控手段使得该种纳米材料在纳米电子自旋器件上有着潜在的应用价值。 |
英文摘要
|
The structures, stabilities and spin-polarized electronic properties of silicene nanoribbons of different widths were studied by means of Self-consistent Charge Density Functional Tight Binding (SCC-DFTB) method. It is found that the stable perfect and vacancy defect silicene nanoribbons appear as honeycomb structures with curved folds. The warping degree at the edge of the nanoribbon is greater than that at the center. Vacancy defects are more likely to appear at the edge of the nanoribbons. The width of the nanoribbons enables the pristine conversion between the semiconductor properties and the metallic properties of the silicene nanoribbons. The vacancy defects in the silicene nanoribbons can effectively regulate the transitions of spintronic properties from semiconductor to metallicity, from semiconductor to semi-metal, and from metallicity to semiconductor or semi-metal. The control method of spintronic properties makes this kind of nanomaterial have potential application value in nano-electronic spin devices. |