引用本文格式: Liao Yi-Ying,Hou Ting-Ping,Yang Yu-Hao,Zheng Yi-Hang,Yu Tao,Liu Wu-Ming,Wu Kai-Ming. Thermodynamic mechanism of carbide precipitation under magnetic field [J]. J. At. Mol. Phys., 2025, 42(4): 046001 (in Chinese) 廖已莹,侯廷平,杨雨豪,郑一航,于涛,刘伍明,吴开明. 磁场下碳化物析出的热力学机制 [J]. 原子与分子物理学报, 2025, 42(4): 046001] |
|
磁场下碳化物析出的热力学机制 |
Thermodynamic mechanism of carbide precipitation under magnetic field |
摘要点击 191 全文点击 42 投稿时间:2023-10-20 修订日期:2023-11-06 |
查看全文 查看/发表评论 |
DOI编号
10.19855/j.1000-0364.2025.046001 |
中文关键词
磁场 碳化物 析出相 热力学机制 |
英文关键词
magnetic field carbide precipitated phase thermodynamics mechanism |
基金项目
国家自然科学基金(12174296, 61835013, 12174461, 12234012, 12334012);国家重点研发计划(2021YFA1400900, 2021YFA0718300, 2021YFA1400243);湖北省自然科学基金一般面上项目(2022CFB474);2021年度省级大学生创新创业训练计划项目(S202110488049);江汉大学校级科研项目(2021yb026) |
|
中文摘要
|
钢中碳化物的形成主要由合金元素的种类以及含量的决定,碳化物对钢铁材料的显微组织形态和力学性能有重要影响. 磁场是影响碳化物析出规律发生改变的重要因素之一. 以常见的碳化物M6C(M=Fe,Mo)作为研究对象,利用第一性原理计算η-Fe2C、Fe3C、Fe2Mo4C、Fe3Mo3C-I、Fe3Mo3C-II和Fe4Mo2C等合金碳化物的磁矩,计算结果表明其中Fe4Mo2C的磁矩最大,达到了7.04μB. 磁矩不仅由碳化物晶胞中Fe原子个数有关,还与Fe Wyckoff占位裘芟喙?. 通过模拟计算碳化物的磁致磁热熔、磁熵、磁焓和磁自由能,从热力学角度对各碳化物进行分析,结果表明磁场会使碳化物的磁致磁热熔和磁熵增加;强磁场会降低M6C的磁自由能进而提高其稳定性. 此工作为研究核聚变材料磁性能提供理论基础和技术参考. |
英文摘要
|
The formation of carbides in steel is determined by the type and quantity of alloying elements. Carbides will affect the microstructure and mechanical properties of steel materials. The magnetic field is an important factor affecting the precipitation of carbides. In this paper, the common precipitated phase M6C (M=Fe,Mo) carbides are selected as the research object. The magnetic moments of η-Fe2C,Fe3C,Fe2Mo4C,Fe3Mo3C-I,Fe3Mo3C-II and Fe4Mo2C are calculated by first-principles. The magnetic moment of Fe4Mo2C is the largest with the value of 7.04μB. The magnetic moment is not only related to the number of Fe atoms in carbides, but also closely related to the crystallographic occupation of Fe atoms. By simulating the magnetic heat capacity, magnetic entropy, magnetic enthalpy and magnetic free energy of carbides, the carbides were analyzed from the thermodynamic point of view. The results show that the magnetic field will increase the magnetic heat capacity and magnetic entropy of carbides. The strong magnetic field will increase the magnetic free energy of M6C and improve its stability. This work provides a theoretical basis and technical reference for studying the magnetic properties of nuclear fusion materials. |
|
|
|
|
|