引用本文格式: Liu Yan-Hong,Chen Wei,Li Yan-Xiang. Entanglement of three quantum nodes via interference and real-time feedforward [J]. J. At. Mol. Phys., 2025, 42: 045001 (in Chinese) [刘艳红,陈伟,李雁翔. 基于干涉和实时前馈实现三个量子节点的纠缠 [J]. 原子与分子物理学报, 2025, 42(4): 045001] |
|
基于干涉和实时前馈实现三个量子节点的纠缠 |
Entanglement of three quantum nodes via interference and real-time feedforward |
摘要点击 375 全文点击 231 投稿时间:2023-11-01 修订日期:2023-11-15 |
查看全文 查看/发表评论 |
DOI编号
10.19855/j.1000-0364.2025.045001 |
中文关键词
原子系综纠缠 干涉 实时前馈 受激拉曼散射 |
英文关键词
entanglement of atomic ensembles interference real-time feedforward stimulated Raman scattering. |
基金项目
国家自然科学基金 |
|
中文摘要
|
纠缠多个空间分离的远程量子节点是构建量子信息网络的基础,不仅如此,多量子节点间的纠缠亦可应用于分布式量子计算和量子精密测量等,实现更高纠缠度的多量子节点间纠缠势在必行。文中基于干涉和实时前馈,借助于腔增强通过采用受激拉曼散射机制实现三个远距离原子系综的纠缠。该方案中只需要三套腔增强原子系统,光学谐振腔增强了光和原子之间的相互作用,使得通过受激拉曼散射产生的斯托克斯光场和反斯托克斯光场的效率得到提高,实现了高纠缠度的光与原子纠缠。在此前提下,基于斯托克斯光场的干涉和实时前馈实现三个远程原子节点间的纠缠。这种方法可以扩展到更大规模,甚至更加复杂的量子信息网络中,从而在量子信息科学中具有潜在的应用。 |
英文摘要
|
The entanglement of multiple spatially separated remote quantum nodes is the foundation for constructing quantum information networks. Moreover, the entanglement between multiple quantum nodes can also be applied to distributed quantum computing and quantum precision measurement. It is imperative to achieve higher entanglement between multiple quantum nodes. In this paper, a scheme is proposed to achieve entanglement of three distant atomic ensembles through cavity enhancement via interference and real-time feedforward. In this scheme, only three sets of cavity enhanced atomic systems are required. The optical resonant cavity enhances the interaction between light and atoms, improving the efficiency of the Stokes and anti Stokes light fields generated through stimulated Raman scattering, and achieving high entanglement between light and atoms. Under this premise, the entanglement between three remote quantum nodes can be achieved through interference and real-time feedforward. This method can be extended to larger and even more complex quantum information networks, thus having potential applications in quantum information science. |