首 页  |  期刊简介  |  投稿须知  |  审稿须知  |  编辑委员会  |  公告信息  |  联系我们  |  English
引用本文格式: Jiang Cheng,Hou Ting-Ping,Jiang Geng-Ping,Liu Wu-Ming,Wu Kai-Ming,Vladimir Tsepelev. First-principles study of the in situ transition mechanism of M7C3 and M23C6 carbides [J]. J. At. Mol. Phys., 2026, 43: 036002 (in Chinese) [蒋枨,侯廷平,蒋更平,刘伍明,吴开明,Vladimir Tsepelev. M7C3与M23C6碳化物原位转变机制的第一性原理研究 [J]. 原子与分子物理学报, 2026, 43(3): 036002]
 
M7C3与M23C6碳化物原位转变机制的第一性原理研究
First-principles study of the in situ transition mechanism of M7C3 and M23C6 carbides
摘要点击 10  全文点击 0  投稿时间:2025-01-09  修订日期:2025-01-25
查看全文  查看/发表评论  
DOI编号   10.19855/j.1000-0364.2026.036002
中文关键词   M7C3碳化物  M23C6碳化物  原位转变  第一性原理  Cr取代
英文关键词   M7C3 carbides  M23C6 carbides  In situ transformation  First-principles calculations  Substitution of Cr
基金项目   国家自然科学基金(12174296, 12234012, 12334012, 52327808);国家重点研发计划(2021YFA1400900, 2021YFA0718300, 2024YFF0726700);2023年湖北省重大公关项目(JD)(2023BAA019-5);111计划项目(D18018)
作者单位E-mail
蒋枨 武汉科技大学省部共建耐火材料与冶金国家重点实验室 jiangcheng@wust.edu.cn 
侯廷平* 武汉科技大学省部共建耐火材料与冶金国家重点实验室 houtingping@wust.edu.cn 
蒋更平 武汉科技大学省部共建耐火材料与冶金国家重点实验室 gengpingjiang@wust.edu.cn 
刘伍明 中国科学院物理研究所 wmliu@aphy.iphy.ac.cn 
吴开明 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 wukaiming@wust.edu.cn 
Vladimir Tsepelev 俄罗斯乌拉尔联邦大学 v.s.tsepelev@urfu.ru 
中文摘要
    通过析出强化,碳化物作为主要析出相显著提升钢的强度与韧性。在服役过程中,碳化物的晶体结构会发生变化,从而影响到钢构件的长期性能和可靠性。为了探究碳化物转变的具体动力学过程,本工作利用第一性原理计算了碳化物M7C3与M23C6(M = Fe, Cr等)原位转变机制。研究结果揭示,相同的基元结构间不同的连接方式,是正交结构M7C3和六角结构M7C3互相转化的本质。M7C3中的三棱柱结构通过与周围原子的协同变形转化为M23C6的基元结构,因此基元间的相互作用及配位模式是决定M7C3与M23C6相变的关键因素。再者,随着Cr原子取代Fe程度的增加,碳化物亥姆霍兹自由能逐渐降低,其热力学稳定性增强。这项研究不仅揭示了M7C3向M23C6转变背后的物理学机制,而且为理解Fe-Cr-C系合金卓越的耐磨性能提供了坚实的理论基础。
英文摘要
    Carbides, as the primary precipitate phase, significantly enhance the strength and toughness of steel through precipitation strengthening. During service, the crystal structure of carbides undergoes changes, which in turn affect the long-term performance and reliability of steel components. To investigate the detailed kinetics of carbide transformations, this study employs first-principles calculations to examine the in-situ transformation mechanisms of M7C3 and M23C6 carbides (M = Fe, Cr, etc.). The results indicate that the distinct connection modes among similar primitive structures govern the mutual transformation of orthorhombic and hexagonal M7C3. The trigonal prismatic structure in M7C3 undergoes a transformation into the primitive structure of M23C6 through a synergistic deformation process with the surrounding atoms. Consequently, the interactions between the primitives and the coordination modes are identified as pivotal factors in determining the phase transformation of M7C3 and M23C6. In addition, the Helmholtz free energy of the carbide experiences a gradual decrease with an increase in the degree of Fe substitution by Cr atoms, and its thermodynamic stability is enhanced. This study not only elucidates the physics mechanism underlying the transformation of M7C3 to M23C6, but also provides a robust theoretical foundation for comprehending the exceptional wear resistance of Fe-Cr-C system alloys.

您是第 5033991 位访客
版权所有 @ 2006《原子与分子物理学报》编辑部
通讯地址:四川省成都市四川大学原子与分子物理研究所   邮编:成都 610065
电话:  传真:  E-mail:jamp@scu.edu.cn
本系统由北京勤云科技发展有限公司设计